

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

	SENISETEK – H										
SL.	BOARD OF	SUBJECT	SUBJECT	PERI	ODS/W	/EEK	EXA	MINA 7	ION	TOTAL	CREDIT
NO	STUDY	CODE					SCHEME			MARKS	L+(T+P)
•				L	Т	Р	ESE	СТ	TA		/2
1	Mechanical Engineering	ME224201	Finite Element Methods	3	1	0	100	20	20	140	4
2	Mechanical Engineering	ME224202	Theory of Elasticity and Plasticity	3	1	0	100	20	20	140	4
3	Mechanical Engineering	ME224203	Advanced Theory of Mechanisms	3	1	0	100	20	20	140	4
4	Mechanical Engineering	ME224204	Advanced Dynamics of Machines	3	1	0	100	20	20	140	4
5	Mechanical Engineering		ELECTIVE - II	3	1	0	100	20	20	140	4
6	Mechanical Engineering	ME224291	Finite Element Methods Lab	0	0	4	75	-	75	150	2
7	Mechanical Engineering	ME224292	Dynamics Lab	0	0	4	75	-	75	150	2
		TOTAL		15	5	8	650	100	250	1000	24

SEMSETER – II

L-Lecture, T-Tutorial, P-Practical, ESE - End Semester Exam, CT - Class Test, TA - Teacher's Assessment

	ELECTIVE - II						
SL. No.	Board of Study	Subject Code	Subject				
1.	Mechanical Engineering	ME224221	Robotics				
2.	Mechanical Engineering	ME224222	Design against Fatigue and Fracture				
3.	Mechanical Engineering	ME224223	Composite Materials				
4.	Mechanical Engineering	ME224224	Optimization Techniques				
5.	Mechanical Engineering	ME224225	Design for Manufacturing and Assembly				

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224201	Finite Element Methods	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
 To provide the fundamental concepts of the theory of the finite element methods. To provide exposure to solve complex engineering problems by using numerical methods such as finite element methods. 	At the end of this course, the students are expected to be able to: CO1: Obtain an understanding of the fundamental theory of the Finite element methods. CO2: Understand and analyse the use of the basic finite elements for solving engineering problems. CO3:Apply the finite element technique to solve problems of structural applications using bar, truss, beam and frame elements. CO4:Apply the finite element method for solving engineering problems related to solid mechanics. Fluid flow and heat transfer. CO5:Solve FEM problems by computer softwares.

<u>Unit – 1</u> [10 Hrs]

CO1

CO2

CO3

Introduction to finite element methods: Direct approach for standard discrete system. Potential Energy approach and virtual work approach, Variational approach and Galerkin's weighted residual approach.

<u>Unit – 2</u> [10Hrs]

Interpolation polynomials – Lagrangian and Hermite polynomials.Global, local and natural co-ordinates, Pascal triangle, concept of continuity, convergence criteria.

Shape functions- for one, two and three dimensional elements, Serendipity elements, Concept of iso-parametricelements.

<u>Unit – 3</u> [10Hrs]

ID Finite Element Analysis : Bar, truss, beam and frame elements, Governing equation and boundary conditions for 1D FEA of Bar extension and Beam bending problems, Derivation of Element Matrices and Vectors; Assembly, Imposition of Boundary Conditions and Nodal Solution.

<u>Unit – 4</u> [10 Hrs]

2D Finite Element Analysis: CST and LST elements, Finite element formulation for planestress, plane strain and axisymmetric problems, Application of FEA to scalar field problems viz. inviscid and viscid flows, heat transfer, analogous problems of torsion.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS M. Tech. (MACHINE DESIGN)

<u>Unit – 5</u> [8Hrs]

CO5

Computer implementation solution technique of FEM: ANSYS Software Applications, Introduction; general solid modeling using 2D and 3D primitives available in ANSYS; Basic concepts of finite elements, with applications to problems confronted by mechanical designers.

Text Books:

- 1. An Introduction to Finite Element Method by J.N. Reddy, TMH, New Delhi
- 2. The Finite Element Method in Engineering by S.S. Rao, Butterworth Heinemann, Boston
- 3. Introduction to Finite Elements in Engineering by Chandrupatla, and Belegundu, PHI Pvt. Ltd., New Delhi

- 1. Textbook of FiniteElement Analysis by P.Seshu, PHI.
- 2. Introduction to the finite element method by C.S.Desai and J.F.Abdel.
- 3. The Finite Element Method its Basis and Fundamental by O. C. zienkiewich, R. L. Taylor, J. Z. Zhu.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224202	Theory of Elasticity and Plasticity	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Ly aluation Scheme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To make students understand the analysis of	At the end of this course, the students are expected
linear elastic solids under mechanical and	to be able to:
thermal loads.	CO1: Understand the basic concepts in mechanics of
2. To provide exposure to two dimensional	solids, including of strain, internal force, stress and
problems in Cartesian and polar coordinates	equilibrium in solids.
3. To make students understand the principle of	CO2:. Understand the stress and deflection of general
torsion of prismatic bars.	cross-section beams.
	CO3: Identify and estimate stresses in rotating
	machine components.
	CO4: Understand the behaviour of general cross-
	section shafts under Torsion.
	CO5: Understand the plastic behaviour of materials.

<u>Unit – 1</u>

Theory of Elasticity: Plane stress and plane strain problems, Equations of equilibrium, Equations of compatibility, Boundary conditions. Stress functions, Bi-harmonic Equations. [10 Hrs]

<u>Unit –</u>2

Two Dimensional Problems in Rectangular Coordinates: Saint Venant's Principle, Solution by polymonials, Bending of Cantilever and simply supported beams. [10 Hrs]

Unit – 3

Problems in Polar Coordinates: Stress distribution symmetrical about an axis, Bending of curved beams.

Stresses in thick cylinders, rotating solid and hollow discs, rotating shafts and cylinders.

Discs of uniform strength, Shrunkfit assemblies of cylinder, stress concentration due to circularhole in a plate subjected to tensile load. **[10 Hrs]**

<u>Unit – 4</u>

Bending of Plates: Rectangular Plate, Bending of axis –symmetric plate with different end conditions. Torsion of non-circular shafts: Saint Venant's theory of rectangular shafts, equilateral triangular shaft, elliptical shaft, Torsion of hollow cross sections, Membrane Analogy. **[10 Hrs]**

Unit – 5

Theory of Plasticity: Introduction, Saint Venant's theory of plastic flow, yield criteria, plastic torsion of bars of circular cross-section. **[8 Hrs]**

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO3

CO4

CO5

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS M. Tech. (MACHINE DESIGN)

Text Books:

- 1. Theory of Elasticity by S. P. Timoshenko & J. N. Goodier, McGraw-Hill.
- 2. Advanced Mechanics of Solids by L. S. Srinath, Tata McGraw-Hill.
- 3. Introduction to Theory of plasticity for Engineers by Hoffman and Sach.

- 1. Theory of Elasticity by Dr. Sadhu Singh, Khanna Publishers.
- 2. Advanced Strength of Materials by Den Hartog.
- 3. Advanced Mechanism of Materials bySeely and Smith.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224203	Advanced Theory of Mechanisms	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Ly aluation Scheme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES		
1. To impart knowledge of kinematic	At the end of this course, the students are expected to		
behavior of different mechanisms.	be able to:		
2. To provide exposure tosynthesize and	CO1: Understand the fundamental concepts of various		
analyze the multi-body systems	mechanisms.		
involving different types of	CO2: Understand different methods to synthesize simple		
mechanisms.	mechanisms.		
	CO3: Understand and evaluate the path traced by various		
	parts of a mechanism.		
	CO4: Understand the graphical methods to design a four		
	bar mechanism.		
	CO5: Understand the basic concepts of robotic		
	mechanism.		

<u>Unit – 1</u>

CO1

CO2

Introduction to planar mechanisms, spatialmechanisms, equivalent mechanism, kinematic inversion, mobility, transmission angle, deviation angle etc.

Kinematic analysis of mechanisms: displacement, velocity and acceleration analysis of planar mechanisms and spatial mechanisms. **[10 Hrs]**

<u>Unit – 2</u>

Synthesis of Planar mechanisms: Type synthesis, number synthesis, dimensional synthesis, Chebyshev polynomials, Freudenstein's displacement equation.

Dimensional synthesis- Different types of synthesis methods e.g. algebraic methods,complex numbers method, Bloch's method etc. [10 Hrs]

<u>Unit – 3</u>

Coupler-curve synthesis and cognate linkages.Roberts Law. Cognate of slider crank mechanism, Double points of a coupler curve. [8 Hrs]

<u>Unit – 4</u>

Curvature Theory: EulersSavary equation –graphical solution, Hartmann construction, First and second Bobillier construction, Cusp points, Inflection circle for a four bar mechanism. Design of a four bar mechanism for specified angular velocities and acceleration of cranks. Cubic of stationary curvature.

[10 Hrs]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO4

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS M. Tech. (MACHINE DESIGN)

Unit – 5 Analysis and synthesis of Cams. Introduction to dimensional synthesis of Robot spatial mechanisms, Kinematic analysis of industrial robot. [10 Hrs1

Text Books:

- 1. Theory of Machines and Mechanisms byUicker, Pennock, Shigley, Tata McGraw-Hill.
- 2. Mechanism & Machine Theory byJ.S.Rao&R.Dukkipati, Wiley-Easten

Reference Books:

- 1. Kinematic Synthesis of Linkages byHartenberg, Denavit.
- 2. Advanced Mechanism and Design (Analysis & Synthesis) Gorge N Sandal & Arthur G Erdman-PHI.
- 3. Kinematic Analysis and Synthesis by Mallik, Ghosh, Dittrich.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224204	Advanced Dynamics of Machines	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Ly aluation Scheme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To impart knowledge of dynamic	At the end of this course, the students are expected to
behaviour of machine components.	be able to:
2. To make students familiar with the	CO1:. Identify the forces and formulate the dynamic
techniques to control the dynamic	model of machine components involving motion in a
behaviour of machine components.	plane.
	CO2: Identify various types of coordinate frames
	required fordescribing the behavior of different
	mechanisms.
	CO3: Identify and analyze the dynamic model of cam
	mechanism.
	CO4: Derive the equations of motion of rotors in absolute
	and rotating coordinate systems and calculate the critical
	speeds of rotors.
	CO5: formulate and evaluate behavior of linear time
	continuous control systems.

<u>Unit – 1</u>

Dynamic Force Analysis: Plane motion mechanism, D'Alemberts Principle, Analysis of a floating link, InertiaForces, The principle of Superposition, Planar rotation about a fixed center, Shaking force and moments. **[10 Hrs]**

<u>Unit – 2</u>

Dynamic force Analysis: space Mechanism, Introduction, Measuring mass moment of inertia, Transformation of Inertia axes, Euler's equation of motion, Impulse and Momentum, Angular impulse and angular momentum.

[10 Hrs]

<u>Unit – 3</u>

Cam Dynamics: Forces in rigid systems, Mathematical models, Response of undamped cam mechanism – analyticalmethod, Position error, Follower response by phase plane method, jump and cross over shock, Johnson's numerical analysis, Unbalance, spring surge and Wind up. [10 Hrs]

<u>Unit – 4</u>

Rotor Dynamics: Single Rotor and Multi Rotor system, balancing, Rotor dynamic consideration in design
,critical speeds and unbalance response stability of rotors, vibrations of discs and blades.[10 Hrs]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO2

CO3

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS M. Tech. (MACHINE DESIGN)

<u>Unit – 5</u>

CO5

Dynamics of Feed Back Control System: Examples of automatic control system, standard input functions, Analysis of proportional-error feedback system, Harmonic input, Stability, Types of controls, Nonlinear system. [8 Hrs]

Text Books:

- 1. Theory of Machines and Mechanisms by Uicker, Pennock, Shigley, Tata McGraw-Hill.
- 2. Dynamics of Machines by Den Hartog.

- 1. Kinematics & Dynamics of Machine by Martin, McGraw Hill.
- 2. Rotor Dynamics by J. S. Rao.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224221	Robotics	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
L'autation Deneme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To provide exposure in both the aspects	At the end of this course, the students are expected to
of analyses and applications of robotics.	be able to:
	CO1: Understand concepts and key components of
	roboticstechnologies.
	CO2: Apply various transformations and develop forward
	and inverse kinematic models of serial robotic
	manipulators.
	CO3 :Solve basic path and motion planning and control
	problems related to serial robotic manipulator
	CO4:Understand functions and uses of drives and
	actuators employed in robotics.
	CO5:Understand use of various sensors and vision
	systems used in robotic manipulators.

<u>Unit – 1</u>

Introduction to Robotics: Definition, Anatomy, Coordinate Systems, WorkEnvelopes, Basic structure, classification, applications of robots. **[8 Hrs]**

<u>Unit – 2</u>

Kinematic analysis of Robotic manipulators:Frame transformation, Denavit-Hartenberg convention, Forward manipulator kinematics, Inversemanipulator kinematics, Velocity and acceleration analysis of serial manipulators. [10 Hrs]

<u>Unit – 3</u>

Dynamics of serial manipulators: Lagrange-Euler formulation, Newton-Eulerformulation. Planning of Manipulator Trajectories: Joint space scheme, Cartesian spacescheme, Robot end-effectors.

[10 Hrs]

<u>Unit – 4</u>

Fundamentals of Robot Drives and Actuators, Hydraulic system stepper motor, Direct current servomotors, A-C servomotors, adaptive control, interpolars. **[10 Hrs]**

<u>Unit – 5</u>

Robotic Sensors: Contact type, noncontacttype, internal sensor, external sensor, Range sensor, Proximity sensor, touch sensor, Force and torque sensor, Encoders, Robotic Vision etc.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO2

CO3

CO4

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Applications of Robot: Handling, loading unloading, welding, painting, assembly, Machining, Manufacturing, Work – cell, Installation of Robots. **[10 Hrs]**

Text Books:

- 1. Robotics and Control by R K Mittal and I J Nagrath, TMH, New Delhi.
- 2. Robotics by K.S.Fu, R.C. Gonzalez and C.S.G. Lee, McGraw Hill.

- 1. Introduction of Robotics Mechanics and control by J.J. Craig, Addision-Wesley.
- 2. Robot Engineering: An Integrated Approach, R.D. Klafter, T.A. Chmielewski and M. Negin, Prentice Hall India.
- 3. Introduction to Robotics Analysis, system Application, saeed B. Niku, Pearson Education.
- 4. Kinematics synthesis of linkages, Hardenberg and Denavit.
- 5. Introduction to Robotics, S.K. Saha, Mcgraw Hill.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224222	Design against Fatigue and Fracture	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Evaluation Selfeme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To impart knowledge of fatigue	At the end of this course, the students are expected to
behaviour of materials.	be able to:
2. To provide broad understanding of	CO1: Understand and analyze the failure of machine
fracture behaviour of materials.	components due to fatigue loading.
	CO2: Understand about different types of the fracture and
	analyze the failure of machine components due to
	fracture.
	CO3:Understand and analyze the failure of machine
	components due to creep.
	CO4: Understand various modes of surface failure.
	CO5:Understand the concept of probabilistic design
	techniques.

Unit – 1

Design against Fatigue: Factors affecting fatigue behaviour, Environmental effects, Influence of superimposed static stress, Gerber parabola, Modified Goodmann diagram, Soderburg line, Stress Concentration, Notch sensitivity, Cumulative fatigue damage, Linear damage rule, Miners Equation, Practical measure to combat fatigue. Loading in finite /life range. [10 Hrs]

Unit -2

CO2 Design against Fracture: Stress intensity, factor of a crack in finite bodies, fracture criteria, Fracture toughness, Fatigue crack propagation, Plastic deformation, Plastic deformation around crack tip, Crack opening displacement, Design of steam, turbine rotors, Rotor discs, Design of thin walled pressure vessels and pressure piping. [10 Hrs]

Unit -3

Design against Creep: Creep of solids, Creep phenomenon, Parameter methods, Larson Miller Parameter, herby Dorn parameter, Manson Hafford parameter, Creep under biaxial stress, Materials for application at elevated temperature. [10 Hrs]

Unit – 4

Surface Failure: Surface geometry, Mating surfaces, Different types of wears-Adhesive, Abrasive, Corrosion, Pitting, spalling: Contact pressure in spherical contact, Stress distribution in spherical contact, Stresses in ball

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO3

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

and thrust bearing Cylinder contact stresses, Stresses in cam and follower, Surface fatigue strength. [10 Hrs]

<u>Unit – 5</u>

CO5

Design for reliability: Introduction Probabilistic approach to design, Design for reliability, Failure mode and effects analysis, Design for safety. **[8 Hrs]**

Text Books:

- 1. Mechanical Engineering Design by Joseph E. Shigley& Charles R. Mischke.
- 2. Engineering Design by George E. Dieter, McGraw-Hill.

- 1. Advanced Machine Design by A. Mubeen, Khanna Publisher.
- 2. Machine Design by Robert L. Norton, Pearson Education.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224223	Composite Materials	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES			
1. To learn the mechanical performance of	At the end of this course, the students are expected to			
laminated composites, including failure	be able to:			
behaviour.	CO1: Distinguish and categorize the types of composite materials.			
	CO2: Analyse the elastic properties and simulate the mechanical performance of composite laminates.			
	CO3: Apply Micromechanics principles in estimating the properties of laminated composites.			
	CO4: Estimate the strength of laminated composites. CO5: Identify and apply the concepts of plate			
	theory in solving composite structural problems.			

<u>Unit – 1</u>

Classification and characterization of composite materials; fibrous, laminated and particulate composites, laminae and laminates, manufacture of laminated fibre reinforced composite materials. [10 Hrs]

<u>Unit – 2</u>

Macromechanical behaviour of lamina, stress-strain relations, engineering constraints for orthotropic materials, stress-strain relations for lamina of arbitrary orientation, strength and stiffness of an orthotropic lamina. **[10 Hrs]**

<u>Unit – 3</u>

Bi-axial strength theories, Micromechanical behaviour of laminae, Rule of mixtures, Macromechanical behaviour of laminates. **[10 Hrs]**

<u>Unit – 4</u>

Single layered configurations, symmetric and anti-symmetric laminates, known symmetric laminates, Strength of laminates, Interlaminar stresses. **[10 Hrs]**

<u>Unit – 5</u>

Design of laminates. Buckling and vibration of laminated beams, plates and shells. [8 Hrs]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO2

CO3

CO4

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS M. Tech. (MACHINE DESIGN)

Text Books:

- 1. Introduction to composite materials design (Material Science & Engg. Series) by Barbero.
- 2. Composite materials: Design and application by Daniel Gay.

- 1. Mechanics of composite materials By Richard M Christensen.
- 2. Composite Manufacturing Material, Product and Process Engg. By Sanjay Majumdar.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224224	Optimization Techniques	L = 3	T = 1	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Evaluation Selfeme	100	20	20	140	3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To impart knowledge and develop basic	At the end of this course, the students are expected to
understanding of the concepts of	be able to:
optimization and mathematical	CO1:Understand theory of different optimization
modelling.	methods to solve various types of engineering
2. To provide exposure to computer	problems.CO2:Understand and solve non-linear
programming and heuristic approaches	optimization problems by using various search
to solve optimization problems.	techniques.
	CO3:Use different direct and gradient based optimisation
	method to solve single and multivariable un-constrained
	or constrained nonlinear function for minimization or
	maximization.
	CO4:Solve optimization problems by using non-
	traditional methods such as geometric and integer
	programming.
	CO5:Understand the application of software for
	optimization and develop the computer programs for
	different optimizationalgorithms.

<u>Unit – 1</u>

Introduction to optimization techniques: Basic Concepts, Constrained & unconstrained optimization problems. Functions of one variable, multivariable optimization with no constraints, Kuhn-tucker conditions, equality& inequality constraints. Applications of linear programming general design applications of optimization conventional Vs optimum design process, optimum design Problem formulation process. [10 Hrs]

<u>Unit – 2</u>

Non-Linear Programming: Basic Concepts of Non Linear Programming, unimodal function, elimination methods, search techniques exhaustive & dichotomous search, golden section method. Interpolation methods-Quadratic & cubic. Unconstrained minimization methods, direct search method – random search methodrandom search method, patterned search method-rosan bricks method, descent methods – steepest descent method. [10 Hrs]

<u>Unit – 3</u>

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

CO1

CO2

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Non linear Programming –constrained optimization techniques,Direct method-cutting plane method, gradient project method, indirect method –penalty finds method (Interior & exterior). **[10 Hrs]**

<u>Unit – 4</u>

CO4

Geometrical & integer programming, Introduction unconstrained minimization & constrained minimization problems. Polynomial unconstrained minimization problem Integer linear & non-linear programming. [10]

Hrs]

<u>Unit – 5</u>

CO5

Stochastic Program & other topics in optimization stochastic linear & non-linear programming Introduction to optimum design with MAT LAB. **[8 Hrs]**

Text Books:

- 1. Engg.Optimization theory & practice by S.S.Rao, New Age Pub.
- 2. Optimization Concepts & application in Engg. by A.D. Belegundu, Pearson.

- 1. Introduction to optimum design by J.S.Arora, McGraw Hill Pub.
- 2. Optimization Theory & Practice by M.C.Joshi, Narosa Pub.
- 3. Practical Methods of Optimization by R.Flether, Wiley.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224291	Finite Element Methods Lab	L = 0	T = 0	P = 4	Credits = 2
Evaluation Scheme	ESE	СТ	TA	Tota l	ESE Duration
Evaluation Scheme	75		75	150	

List of Experiments to be performed:

- 1. Use and Application of ANSYS and Pro-E for different types of problem related to theory of elasticity and hydrodynamic lubrication, mechanism, vibration, structure, Hydrostatic
- 2. Static stress analysis of wall bracket.
- 3. Steady state thermal analysis of circular tank and pipe assembly.
- 4. To perform stress analysis of 2D trusses using ANSYS.
- 5. To generate a C program to calculate stresses in a tapered shaft using FEM.
- 6. To generate a C program to make analysis of 2D truss using isoparametric elements in FEM.
- 7. To generate a C program to analyse temperature distribution in a one dimensional heat flow model.
- 8. To use pre-processor in ANSYS to generate & mesh a model using various elements in FEM.
- 9. To use postprocessor in ANSYS to generate stress analysis results.
- 10. To analyse stress in a crane hook using ANSYS.
- 11. Stress analysis of leaf spring using Von-Mises theory in ANSYS.
- 12. To perform dynamic stress analysis of connecting rod using ANSYS.

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgath Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

M. Tech. (MACHINE DESIGN)

Subject Code ME224292	Dynamics Lab	L = 0	T = 0	P = 4	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Tota l	ESE Duration
Evaluation Scheme	75		75	150	

List of Experiments to be performed:

- 1. To perform experiment on rotor balancing arrangement.
- 2. To perform experiment on cam-follower mechanism arrangement.
- 3. To perform experiment on Gyroscope.
- 4. To perform experiment on compound pendulum arrangement.
- 5. To perform experiment on torsional vibration measuring arrangement.

		October 2020	1.00	Applicable for AY	
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards	